Плюсануть
Поделиться
Класснуть
Запинить


Олимпиадный тренинг

Вы можете самостоятельно решать эти задачи столько раз, сколько вам это понадобится.
   

Банкет

Обход в глубину

На банкет были приглашены N Очень Важных Персон (ОВП). Были поставлены 2 стола. Столы достаточно большие, чтобы все посетители банкета могли сесть за любой из них. Проблема заключается в том, что некоторые ОВП не ладят друг с другом и не могут сидеть за одним столом. Вас попросили определить, возможно ли всех ОВП рассадить за двумя столами.
 
Входные данные
В первой строке входных данных содержатся два числа: N и M (1 <= N,M <= 100), где N – количество ОВП, а M – количество пар ОВП, которые не могут сидеть за одним столом. В следующих M строках записано по 2 числа – пары ОВП, которые не могут сидеть за одним столом.
 
Выходные данные
Если способ рассадить ОВП существует, то  выведите YES в первой строке и номера ОВП, которых необходимо посадить за первый стол, во второй строке. В противном случае в первой и единственной строке выведите NO.

Ввод Вывод
3 2
1 2
1 3
YES
1

Цепочка слов

Обход в глубину Бор

Цепочкой слов длины n назовем последовательность слов w1, w2, ..., wn такую, что для 1 ≤ i ≤ n слово wi является собственным префиксом слова wi + 1.
 
Напомним, что слово u длины k называется собственным префиксом слова v длины l, если l > k и первые k букв слова v совпадают со словом u.
 
Задано множество слов S = {s1, s2, ..., sm}. Найдите максимальную длину цепочки слов, которую можно построить, используя (возможно, не все) слова этого множества.
 
Входные данные
Первая строка входного файла содержит целое число m(1 ≤ m ≤ 255). Каждая из последующих m строк содержит по одному слову из множества S.
 
Все слова не пусты, имеют длину, не превосходящую 255 символов, и состоят только из строчных букв латинского алфавита.
 
Выходные данные
В выходной файл выведите ответ на задачу.

Ввод Вывод
3
a
ab
abc
 
5
a
ab
bc
bcd
add
2

Type Printer

Бор Обход в глубину

Вам нужно напечатать N слов на Movable Type Printer. Movable Type Printers — это старые принтеры, для работы которых требуется ставить маленькие металлические кусочки (каждый из кусочков содержит одну букву) в определенном порядке, образуя таким образом слова. Потом все они вдавливаются в лист бумаги. Таким образом печатается одно слово. Ваш принтер позволяет делать следующие операции:
 
Добавить букву в конец слова, находящегося сейчас на принтере.
Удалить последнюю букву из слова, находящегося сейчас на принтере. Эту операцию можно делать, только если слово содержит хотя бы одну букву.
Напечатать слово, находящееся на принтере (при этом слово никуда не исчезает, можно печатать его ещё раз и ещё раз).
Изначально на принтере содержится пустое слово. В конце печати на принтере можно оставить непустое слово. Слова, которые вам даны, вы можете печатать в произвольном порядке.
 
Каждая из трёх операций занимает одну единицу времени. Вам нужно найти последовательность операций, которая печатает данные N слов за минимальное время. Если минимальных последовательностaей несколько, выведите любую.
 
Входные данные
Ваша программа должна считать следующие входные данные:
 
На первой строке число N (1<=N<=25000).
На следующих N строках слова, состоящие из маленьких букв латинского алфавита. Длина каждого слова не превышает 20. Все слова различны.
 
Выходные данные
Ваша программа должна вывести следующие данные:
 
На первой строке M — число операций.
На следующих M строках по одному символу — описание операций. Каждая операция описывается одним символом:
Добавление символа обозначается собственно символом.
Удаление символа обозначается символом «-» (минус, ASCII-код 45).
Операция «напечатать текущее слово» обозначается символом «P» (заглавная латинская буква P).

Ввод Вывод
3
print
the
poem
20
t
h
e
P
-
-
-
p
o
e
m
P
-
-
-
r
i
n
t
P

Баобаб

Обход в глубину

Дан неориентированный невзвешенный граф. Необходимо определить, является ли он деревом.
 
Входные данные
В первой строке входного файла содержится одно натуральное число N (N ≤ 100) - количество вершин в графе. Далее в N строках по N чисел - матрица смежности графа: в i-ой строке на j-ом месте стоит 1, если вершины i и j соединены ребром, и 0, если ребра между ними нет. На главной диагонали матрицы стоят нули. Матрица симметрична относительно главной диагонали.
 
Выходные данные
Вывести "YES", если граф является деревом, и "NO" иначе.

Ввод Вывод
6
0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0
NO
3
0 1 0
1 0 1
0 1 0
YES

Обход графа

Обход в глубину

Дан неориентированный невзвешенный граф. Для него вам необходимо найти количество вершин, лежащих в одной компоненте связности с данной вершиной (считая эту вершину).

Входные данные
В первой строке входных данных содержатся два числа: N и S (1 ≤ N ≤ 100; 1 ≤ S ≤ N), где N – количество вершин графа, а S – заданная вершина. В следующих N строках записано по N чисел – матрица смежности графа, в которой 0 означает отсутствие ребра между вершинами, а 1 – его наличие. Гарантируется, что на главной диагонали матрицы всегда стоят нули.

Выходные данные
Выведите одно целое число – искомое количество вершин.
 

Ввод Вывод
3 1
0 1 1
1 0 0
1 0 0
3

Есть ли цикл?

Обход в глубину Алгоритм Флойда

Дан ориентированный граф. Требуется определить, есть ли в нем цикл.
 
Входные данные
В первой строке вводится число вершин N≤ 50. Далее в N строках следуют по N чисел, каждое из которых – 0 или 1. j-ое число в i-ой строке равно 1 тогда и только тогда, когда существует ребро, идущее из i-ой вершины в j-ую. Гарантируется, что на диагонали матрицы будут стоять нули.
 
Выходные данные
Выведите 0, если в заданном графе цикла нет, и 1, если он есть.

Ввод Вывод
3
0 1 0
0 0 1
0 0 0
0
3
0 1 0
0 0 1
1 0 0
1