Задача:  Делимость
                  
              Сегодня в школе на уроке математики проходят делимость. Чтобы продемонстрировать свойства делимости, учитель выписал на доске все целые числа от 1 до
N в несколько групп, при этом если одно число делится на другое, то они обязательно оказались в разных группах. Например, если взять N = 10, то получится 4 группы.
	- Первая группа: 1.
 
	- Вторая группа: 2, 7, 9.
 
	- Третья группа: 3, 4, 10.
 
	- Четвёртая группа: 5, 6, 8.
 
Вы уже догадались, что, поскольку любое число делится на 1, одна группа всегда будет состоять только из числа 1, но в остальном подобное разбиение можно выполнить различными способами. От вас требуется определить минимальное число групп, на которое можно разбить все числа от 1 до N в соответствии с приведённым выше условием.
Программа получает на вход одно натуральное число N, не превосходящее 10
9, и должна вывести одно число – искомое минимальное количество групп.
Примеры
	
		
			| № | 
			Входные данные | 
			Выходные данные | 
		
	
	
		
			| 1 | 
			10 | 
			4 | 
		
	
          
             
            
        
                
        
        
        
            
           
    
                  
                    
    
                                   
                      
                        
    
            
            Ваш ответ: