Плюсануть
Поделиться
Класснуть
Запинить


Олимпиадный тренинг

Вы можете самостоятельно решать эти задачи столько раз, сколько вам это понадобится.
   

Заправки-2

Алгоритм Дейкстры

В стране N городов, некоторые из которых соединены между собой дорогами. Для того, чтобы проехать по одной дороге, требуется один бак бензина. Помимо этого у вас есть канистра для бензина, куда входит столько же топлива, сколько входит в бензобак.
 
В каждом городе бак бензина имеет разную стоимость. Вам требуется добраться из первого города в N-й, потратив как можно меньшее денег.
 
В каждом городе можно заправить бак, заправить бак и канистру или же перелить бензин из канистры в бак. Это позволяет экономить деньги, покупая бензин в тех городах, где он стоит дешевле, но канистры хватает только на одну заправку бака!

Входные данные
В первой строке вводится число N (1<=N<=100), в следующей строке идет N чисел, i-е из которых задает стоимость бензина в i-м городе (всё это целые числа из диапазона от 0 до 100). Затем идет число M – количество дорог в стране, далее идет описание самих дорог. Каждая дорога задается двумя числами – номерами городов, которые она соединяет. Все дороги двухсторонние (то есть по ним можно ездить как в одну, так и в другую сторону), между двумя городами всегда существует не более одной дороги, не существует дорог, ведущих из города в себя.
 
Выходные данные
Требуется вывести одно число – суммарную стоимость маршрута или -1, если добраться невозможно.
 
Ввод Вывод
4
1 10 2 15
4
1 2
1 3
4 2
4 3
2

Источник: http://informatics.mccme.ru/mod/statements/view3.php?id=257&chapterid=113213#

Заправки

Алгоритм Дейкстры

В стране N городов, некоторые из которых соединены между собой дорогами. Для того, чтобы проехать по одной дороге, требуется один бак бензина. В каждом городе бак бензина имеет разную стоимость. Вам требуется добраться из первого города в N-ый, потратив как можно меньшее денег. Покупать бензин впрок нельзя.
 
Входные данные
В первой строке вводится число N (1≤N≤100), в следующей строке идет N чисел, i-ое из которых задает стоимость бензина в i-ом городе (всё это целые числа из диапазона от 0 до 100). Затем идет число M – количество дорог в стране, далее идет описание самих дорог. Каждая дорога задается двумя числами – номерами городов, которые она соединяет. Все дороги двухсторонние (то есть по ним можно ездить как в одну, так и в другую сторону), между двумя городами всегда существует не более одной дороги, не существует дорог, ведущих из города в себя.
 
Выходные данные
Требуется вывести одно число – суммарную стоимость маршрута или -1, если добраться невозможно.

Ввод Вывод
5
3 6 1 7 6 
8
1 2
5 4
5 1
3 4
5 2
2 4
2 3
3 1
3

Автобусы

Алгоритм Дейкстры

Между некоторыми деревнями края Васюки ходят автобусы. Поскольку пассажиропотоки здесь не очень большие, то автобусы ходят всего несколько раз в день.
 
Марии Ивановне требуется добраться из деревни d в деревню v как можно быстрее (считается, что в момент времени 0 она находится в деревне d).
 
Входные данные
Сначала вводится число N – общее число деревень (1 <= N <= 100),  затем номера деревень d и v,  за ними следует количество автобусных рейсов R (0 <= R <= 10000). Далее идут описания автобусных рейсов. Каждый рейс задается номером деревни отправления, временем отправления, деревней назначения и временем прибытия (все времена – целые от 0 до 10000). Если в момент t пассажир приезжает в какую-то деревню, то уехать из нее он может в любой момент времени, начиная с t.
 
Выходные данные
Выведите минимальное время, когда Мария Ивановна может оказаться в деревне v. Если она не сможет с помощью указанных автобусных рейсов добраться из d в v, выведите -1.

Ввод Вывод
3
1 3
4
1 0 2 5
1 1 2 3
2 3 3 5
1 1 3 10
5

Защищенное соединение

Алгоритм Дейкстры

В свете недавних новостей о прослушке каналов связи, два непримиримых интернет-гиганта Урагании «Laim.UR» и «Xenda» решили подписать соглашение об установлении защищенного канала связи между дата-центрами друг друга. В Урагании n городов, но, к сожалению, ни в одном городе нет дата-центров обоих гигантов. Поэтому для формирования защищенного канала придется прокладывать междугородние линии связи.
Специалисты компаний определили m пар городов, которые можно соединить, проложив сегмент канала связи, и оценили стоимость создания такого сегмента для каждой из этих пар.

Результирующий канал может состоять из нескольких сегментов. Он должен начинаться в одном из городов, где находится дата-центр первой компании, может проходить через промежуточные города и должен заканчиваться в городе, где находится дата-центр второй компании.
Теперь необходимо определить минимальную стоимость защищенного канала, соединяющего два дата-центра компаний.

Формат входных данных
В первой строке находятся целые числа n и m (2 ≤ n ≤ 5 000, 1 ≤ m ≤ 105 ) — количество городов и количество пар городов, которые можно соединить сегментом канала связи. Во второй строке находятся n целых чисел ai (0 ≤ ai ≤ 2). Если ai = 0, то в i-м городе нет дата-центра ни одного из гигантов. Если ai = 1, то в i-м городе есть дата-центр «Laim.UR», а если ai = 2, то в i-м городе находится дата-центр «Xenda». Гарантируется, что среди этих чисел есть как минимум одна единица и одна двойка. В каждой из следующих m строк находится по три целых числа — si , ti и ci , которые означают, что города si и ti (1 ≤ si , ti ≤ n, si != ti) можно соединить сегментом канала связи стоимостью ci (1 ≤ ci ≤ 105 ). Каждую пару городов можно соединить не более чем одним сегментом канала.

Формат выходных данных
Если соединить защищенным каналом связи два дата-центра разных интернет-гигантов возможно, то выведите в выходной файл три числа: x, y и d, означающие, что между городами x и y возможно провести канал связи суммарной стоимостью d. В городе x должен находиться дата-центр «Laim.UR», в городе y — дата-центр «Xenda». Если существует несколько оптимальных ответов, выведите любой. Если провести искомый канал невозможно, выведите −1.

Ввод Вывод
6 7
1 0 1 2 2 0
1 3 3
1 2 4
2 3 3
2 4 2
1 6 5
3 5 6
5 6 1
3 4 5
4 2
1 0 0 2
1 3 3
2 4 2
-1

Пояснение
В первом примере оптимально построить канал связи из двух сегментов: 3 − 2 и 2 − 4.

Домой на электричках

Алгоритм Дейкстры

Одна из команд-участниц олимпиады решила вернуться домой на электричках. При этом ребята хотят попасть домой как можно раньше. К сожалению, не все электрички идут от города, где проводится олимпиада, до станции, на которой живут ребята. И, что еще более обидно, не все электрички, которые идут мимо их станции, останавливаются на ней (равно как вообще, электрички останавливаются далеко не на всех станциях, мимо которых они идут).
 
Все станции на линии пронумерованы числами от 1 до N. При этом станция номер 1 находится в городе, где проводится олимпиада, и в момент времени 0 ребята приходят на станцию. Станция, на которую нужно попасть ребятам, имеет номер E.
 
Напишите программу, которая по данному расписанию движения электричек вычисляет минимальное время, когда ребята могут оказаться дома.
 
Входные данные
Во входном файле  записаны сначала числа N (2 ≤ N ≤ 100) и E (2 ≤ E ≤ N). Затем записано число M (0 ≤ M ≤ 100), обозначающее число рейсов электричек. Далее идет описание M рейсов электричек. Описание каждого рейса электрички начинается с числа Ki (2 ≤ Ki ≤ N) — количества станций, на которых она останавливается, а далее следует Ki пар чисел, первое число каждой пары задает номер станции, второе — время, когда электричка останавливается на этой станции (время выражается целым числом из диапазона от 0 до 109). Станции внутри одного рейса упорядочены в порядке возрастания времени. В течение одного рейса электричка все время движется в одном направлении — либо от города, либо к городу.
 
Выходные данные
В выходной файл  выведите одно число — минимальное время, когда ребята смогут оказаться на своей станции. Если существующими рейсами электричек они добраться не смогут, выведите –1.
 
Ввод Вывод
5 2
2
4 1 1 3 2 4 10 5 20
3 5 10 4 15 2 40
40

Проложи дорогу

Алгоритм Дейкстры

Правительство некоторой всем известной страны решило глобально перестроить дорожную систему – оно уже успело разрушить все дороги, и теперь нужно выстроить дорожную сеть заново. Новые двусторонние дороги можно строить между любыми двумя городами, и стоимость постройки дороги равна расстоянию между соответствующими городами. Однако в некоторых случаях ландшафт позволяет построить дорогу за другую цену, такие пары городов называются особыми. Правительство решило первым делом соединить два главных города данной страны – А и Б. Вам поручили разработать план постройки дорог, при котором суммарная стоимость всех построенных дорог будет минимально возможной, и при этом по построенным дорогам можно будет добраться из города А в город Б.

Входные данные
Первая строка содержит число N – количество городов в стране (\(1\leq N\leq10^4\)). Каждая из последующих N строк содержит по два целых числа, xi и yi – координаты соответствующего города (\(|x|, |y| \leq 10^6\) ). Далее содержится число M – количество особых пар городов (\(0\leq M \leq min(10^4, N(N-1)/2)\). Далее в M строках содержится описание особых дорог, каждое состоит из трех целых чисел: u, v – пара различных городов, между которыми проходит особая дорога, и w – стоимости постройки соответствующей дороги (\(1 \leq u,v \leq N, 0 \leq w \leq 10^6\)). В последней строке содержатся номера городов А и Б (от 1 до N).

Выходные данные
Выведите одно число – искомую минимальную длину. Ваш ответ должен отличаться от правильного не более чем на 10−5.
 

Ввод Вывод
4
1 1
0 0
1 0
0 1
1
1 2 100
2 1
2.0000000000

Транспортировка

Алгоритм Дейкстры Бинарный поиск по ответу

К очередной Летней компьютерной школе было решено подготовить кружки как для школьников, так и для всех преподавателей.
 
Имея привычку делать важные дела в самый последний момент, дизайнер закончил работу над макетом за два дня до начала школы. Ещё день уйдёт у завода-изготовителя на то, чтобы изготовить кружки и нанести на них изображение. Нато, чтобы довезти кружки от завода-изготовителя до ЛКШ,остаётся всего 24 часа.
 
Заказ на 10000000 экземпляров кружек (а именно столько заказали организаторы), конечно же, за один рейс не увезти. Однако, за первый рейс хочется привезти максимальное количество кружек. Для перевозки был заказан один большегрузный автомобиль. Но есть один нюанс: на некоторых дорогах установлено ограничение на вес автомобиля. Поэтому если автомобиль нагрузить кружками под завязку, то, возможно, не удастся воспользоваться самым коротким маршрутом, а придётся ехать в объезд. Может случиться даже так, что из-за этого грузовик не успеет доехать до лагеря вовремя, а этого допустить никак нельзя. Итак, сколько же кружек можно погрузить в автомобиль, чтобы успеть привезти этот ценный груз вовремя, и не нарушая правил дорожного движения?
 
Входные данные
В первой строке находятся числа n (1≤n≤500) и m - количество узловых пунктов дорожной схемы и количество дорог, соответственно. В следующих m строках находится информация о дорогах. Каждая дорога описывается в отдельной строке следующим образом. Сначала указаны номера узловых пунктов, которые соединяются данной дорогой, потом время, которое тратится на проезд по этой дороге, и, наконец, максимальный вес автомобиля, которому разрешено ехать по этой дороге. Известно, что все дороги соединяют различные пункты, причем для каждой пары пунктов есть не более одной дороги, непосредственно их соединяющей. Все числа разделены одним или несколькими пробелами. 
 
Узловые пункты нумеруются числами от 1 до n. При этом завод по производству кружек имеет номер 1, а ЛКШ - номер n. Время проезда по дороге задано в минутах и не превосходит 1440 (24 часа). Ограничение на массу задано в граммах и не превосходит одного миллиарда. Кроме того, известно, что одна кружка весит 100 грамм, а пустой грузовик -  3 тонны.
 
Выходные данные
Выведите одно число - максимальное количество кружек, которое можно привезти за первый рейс, потратив не более 24часов.
 
Ввод Вывод
3 3
1 2 10 3000220
2 3 20 3000201
1 3 1 3000099
2

Кратчайший путь (AB)

Алгоритм Дейкстры

Вам дано описание дорожной сети страны. Ваша задача – найти длину кратчайшего пути между городами А и B.

Входные данные
Сеть дорог задана во входном файле следующим образом: первая строка содержит числа N и K (1<=N<=100000, 0<=K<=300000), где K – количество дорог. Каждая из следующих K строк содержит описание дороги с двусторонним движением – три целых числа ai, bi и li (1aibiN, 1li106). Это означает, что имеется дорога длины li, которая ведет из города ai в город bi. В последней строке находятся два числа А  и В  – номера городов, между которыми надо посчитать кратчайшее расстояние (1<=A,B<=N )

Выходные данные
Вы должны вывести в выходной файл единственное число – расстояние между требуемыми городами. Если по дорогам от города А  до города В  доехать невозможно, выведите –1.
 

Ввод Вывод
6 4
1 2 7
2 4 8
4 5 1
4 3 100
3 1
115

Алгоритм Дейкстры за MlogN

Алгоритм Дейкстры

Напишите программу, которая будет находить расстояния в неориентированном взвешенном графе с неотрицательными длинами ребер, от указанной вершины до всех остальных. Программа должна работать быстро для больших разреженных графов.

 

Входные данные

В первой строке входных данных задано число NUM — количество различных запусков алгоритма Дейкстры (на разных графах). Далее следуют NUM блоков, каждый из которых имеет следующую структуру.

Первая строка блока содержит два числа N и M, разделенные пробелом — количество вершин и количество ребер графа. Далее следуют M строк, каждая из которых содержит по три целых числа, разделенные пробелами. Первые два из них в пределах от 0 до N–1 каждое и обозначают концы соответствующего ребра, третье — в пределах от 0 до 20000 и обозначает длину этого ребра. Далее, в последней строке блока, записанное единственное число от 0 до N–1 — вершина, расстояния от которой надо искать.

Количество различных графов в одном тесте NUM не превышает 5. Количество вершин не превышает 60000, рёбер — 200000.

 

Выходные данные

Выведите на стандартный выход (экран) NUM строк, в каждой из которых по Ni чисел, разделенных пробелами — расстояния от указанной начальной вершины взвешенного неориентированного графа до его 0-й, 1-й, 2-й и т. д. вершин (допускается лишний пробел после последнего числа). Если некоторая вершина недостижима от указанной начальной, вместо расстояния выводите число 2009000999 (гарантировано, что все реальные расстояния меньше).

 

Ввод Вывод
1
5 7
1 2 5
1 3 2
2 3 4
2 4 3
3 4 6
0 3 20
0 4 10
1
18 0 5 2 8