Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу четыре камня или увеличить количество камней в куче в два раза. Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается, когда количество камней в куче становится не менее 20. Если при этом в куче оказалось не более 26 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник (при этом победа учитывается как ход противника). В начальный момент в куче было S камней, 1 ≤ S ≤ 19.
Задание 19.
Найдите минимальное значение S, при котором Петя не может выиграть за один ход, но Ваня может выиграть своим первым ходом после любого хода Пети.
Задание 20.
Найдите наименьшее и наибольшее значения S, когда Петя имеет выигрышную стратегию, причём одновременно выполняются два условия:
– Петя не может выиграть за один ход;
– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания.
Задание 21
Найдите значение S, при котором одновременно выполняются два условия:
– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
На каждый вопрос вводите ответ в отдельной строке. Если ответ на вопрос содержит несколько значений, то разделяйте их одним пробелом.